Geometric Series
geometric series: choose a real value $r \in \mathbb{R}$
geometric series is series in form in

$$
\left(\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \text { if }|r|<1\right)
$$

* - lemma:

$$
\sum_{n=0}^{\infty} r^{n}=\left\{\begin{array}{lll}
\text { exist } \Phi=\frac{1}{1-r} \text { it }|r|<1 & \text { (converges) } \\
\text { does not exist it }|r| \geq 1 & \text { (diverges) }
\end{array}\right.
$$

-proof: we have $s_{m}: 1+r+r^{2}+\ldots+r^{m}=\frac{1-r_{m+1}}{1-r}$

$$
\text { (why? } \left.\quad(1-r)\left(1+r+r^{2}+\ldots+r^{m}\right)=1-r^{m+1}\right)
$$

then $\lim _{m \rightarrow \infty} \frac{1-r^{m+1}}{1-r}= \begin{cases}\frac{1}{1-r} & \text { it }|r|<1 \\ \text { diverges } & \text { if }|r|>1\end{cases}$
criterion for convergence of $\sum_{n=1}^{\infty} a_{n}$ (series):

* theorem 6: 1) it $\sum_{n=1}^{\infty} a_{n}$ converges then $a_{n} \xrightarrow{\infty}$

2) if a_{n} diverges or $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges

$$
\begin{aligned}
& s_{1}=1 \\
& s_{2}=1.5 \\
& s_{3}=1.8
\end{aligned}
$$

